As a computer science guy who interlops in computer engineering i really want to find time to build something cool like this and tapeout. The retro architectures for rendering are simple but fun! I love the project
I recommend getting started like the author did: simulation first, then FPGA. Honestly FPGA will take you very far. I always get a kick out of being able to design my own SoC. "Hmmm I need 9 separate I2C ports... Ok, copy block, paste paste paste..." Or if you have an operation in software that's taking forever you can write an accelerator for it
It’s amazing and wonderful to see the Internet support these tiny cliques of interest. Having everybody connected leads to homogenization of culture in some ways, but it also supports these couple dozen (?) people around the world finding each other for this amazing little competition.
Having everybody connected leads to homogenization of culture in some ways
The internet may hypothetically homogenize culture relative to a society that does not have any kind of mass communication at all, but relative to the world it was actually introduced into, the internet has completely balkanised the culture. Prior to the internet, we had television, cinema, literature, radio, and newspapers, which were all centralised and controlled enough that they created a shared monoculture in nations. A signifant portion of a country's population would watch, read, and listen to the same media. The internet bucked that trend, allowing all kinds of new subcultures to pop up and to more easily cross national boundaries.
I thought this was pretty cool but the first video didn't play. All this write up and I really just want to see the damn demo in action first! (Edit: reloaded the page and it worked. I still would like to see it on rela hardware!)
They're a kind of analogue dynamic memory. I'd hesitate to call them RAM because the Access is not Random, but they are a kind of shift register and early computers used those for RAM.
Imagine a pair of MOSFETs connected to a pair of capacitors, and a bunch of those joined together in a chain. All the gates of each one of the pair of MOSFETS are connected together, giving you a "left" and "right" clock input.
When you put a signal in if you pulse the "left" and "right" inputs, it'll store the signal voltage in one capacitor, then pass it off to the next capacitor in turn, like old-timey firefighter handing buckets of water down a line of people.
They used to use this for delaying audio signals before digital memory and analogue to digital conversion was cheap enough to use.
> 1024x32 Commercial SRAM > CF_SRAM_1024x32 > Commercial SRAM: 1024 words x > 32 bits (4KB) with Wishbone Bus interface > Area: 0.17mm² > GPIOs: 0 > License: Commercial - $2500 per project
If you have a ROM, it's not "no memory".
Needlessly pedantic!
I thought this was pretty cool but the first video didn't play. All this write up and I really just want to see the damn demo in action first! (Edit: reloaded the page and it worked. I still would like to see it on rela hardware!)
https://youtu.be/7xPS-0nydms
Bucket-brigade delay lines?
But I'm not really familiar with what that is.
Imagine a pair of MOSFETs connected to a pair of capacitors, and a bunch of those joined together in a chain. All the gates of each one of the pair of MOSFETS are connected together, giving you a "left" and "right" clock input.
When you put a signal in if you pulse the "left" and "right" inputs, it'll store the signal voltage in one capacitor, then pass it off to the next capacitor in turn, like old-timey firefighter handing buckets of water down a line of people.
They used to use this for delaying audio signals before digital memory and analogue to digital conversion was cheap enough to use.